new(all): Azure OpenAI added as new LLM provider.
This commit is contained in:
parent
52f9bcbce0
commit
4d90187484
2 changed files with 19 additions and 4 deletions
|
@ -314,10 +314,25 @@ export class GBDeployer implements IGBDeployer {
|
|||
public async loadOrCreateEmptyVectorStore(min: GBMinInstance): Promise<HNSWLib> {
|
||||
let vectorStore: HNSWLib;
|
||||
|
||||
const azureOpenAIKey = await min.core.getParam(min.instance, 'Azure Open AI Key', null);
|
||||
const azureOpenAIEndpoint = await min.core.getParam(min.instance, 'Azure Open AI Endpoint', null);
|
||||
const azureOpenAIDeployment = await min.core.getParam(min.instance, 'Azure Open AI Deployment', null);
|
||||
|
||||
let embedding;
|
||||
if (azureOpenAIKey) {
|
||||
embedding = new OpenAIEmbeddings({ maxConcurrency: 5,
|
||||
azureOpenAIApiKey: azureOpenAIKey,
|
||||
azureOpenAIApiDeploymentName: azureOpenAIDeployment
|
||||
});
|
||||
}else{
|
||||
embedding = new OpenAIEmbeddings({ maxConcurrency: 5 })
|
||||
}
|
||||
|
||||
|
||||
try {
|
||||
vectorStore = await HNSWLib.load(min['vectorStorePath'], new OpenAIEmbeddings({ maxConcurrency: 5 }));
|
||||
vectorStore = await HNSWLib.load(min['vectorStorePath'], embedding);
|
||||
} catch {
|
||||
vectorStore = new HNSWLib(new OpenAIEmbeddings({ maxConcurrency: 5 }), {
|
||||
vectorStore = new HNSWLib(embedding, {
|
||||
space: 'cosine',
|
||||
numDimensions: 1536,
|
||||
});
|
||||
|
|
|
@ -293,8 +293,8 @@ export class ChatServices {
|
|||
|
||||
if (azureOpenAIKey) {
|
||||
model = new AzureOpenAI({
|
||||
azureOpenAIEndpoint: azureOpenAIKey,
|
||||
apiKey: azureOpenAIEndpoint,
|
||||
azureOpenAIEndpoint: azureOpenAIEndpoint,
|
||||
apiKey: azureOpenAIKey,
|
||||
azureOpenAIApiDeploymentName: azureOpenAIDeployment
|
||||
});
|
||||
} else {
|
||||
|
|
Loading…
Add table
Reference in a new issue