178 lines
7.5 KiB
TypeScript
178 lines
7.5 KiB
TypeScript
/*****************************************************************************\
|
|
| █████ █████ ██ █ █████ █████ ████ ██ ████ █████ █████ ███ ® |
|
|
| ██ █ ███ █ █ ██ ██ ██ ██ ██ ██ █ ██ ██ █ █ |
|
|
| ██ ███ ████ █ ██ █ ████ █████ ██████ ██ ████ █ █ █ ██ |
|
|
| ██ ██ █ █ ██ █ █ ██ ██ ██ ██ ██ ██ █ ██ ██ █ █ |
|
|
| █████ █████ █ ███ █████ ██ ██ ██ ██ █████ ████ █████ █ ███ |
|
|
| |
|
|
| General Bots Copyright (c) pragmatismo.cloud. All rights reserved. |
|
|
| Licensed under the AGPL-3.0. |
|
|
| |
|
|
| According to our dual licensing model, this program can be used either |
|
|
| under the terms of the GNU Affero General Public License, version 3, |
|
|
| or under a proprietary license. |
|
|
| |
|
|
| The texts of the GNU Affero General Public License with an additional |
|
|
| permission and of our proprietary license can be found at and |
|
|
| in the LICENSE file you have received along with this program. |
|
|
| |
|
|
| This program is distributed in the hope that it will be useful, |
|
|
| but WITHOUT ANY WARRANTY, without even the implied warranty of |
|
|
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
|
| GNU Affero General Public License for more details. |
|
|
| |
|
|
| "General Bots" is a registered trademark of pragmatismo.cloud. |
|
|
| The licensing of the program under the AGPLv3 does not imply a |
|
|
| trademark license. Therefore any rights, title and interest in |
|
|
| our trademarks remain entirely with us. |
|
|
| |
|
|
\*****************************************************************************/
|
|
|
|
'use strict';
|
|
|
|
import path from 'path';
|
|
import { GBLog, GBMinInstance } from 'botlib';
|
|
import { DialogKeywords } from './DialogKeywords.js';
|
|
import { CollectionUtil } from 'pragmatismo-io-framework';
|
|
import { GBAdminService } from '../../admin.gbapp/services/GBAdminService.js';
|
|
import urlJoin from 'url-join';
|
|
import { GBServer } from '../../../src/app.js';
|
|
import { GBLogEx } from '../../core.gbapp/services/GBLogEx.js';
|
|
import { GBUtil } from '../../../src/util.js';
|
|
import fs from 'fs/promises';
|
|
import { AzureOpenAI } from 'openai';
|
|
import { OpenAIClient } from '@langchain/openai';
|
|
|
|
/**
|
|
* Image processing services of conversation to be called by BASIC.
|
|
*/
|
|
export class ImageProcessingServices {
|
|
/**
|
|
* Sharpen the image.
|
|
*
|
|
* @example file = SHARPEN file
|
|
*/
|
|
public async sharpen({ pid, file: file }) {
|
|
const { min, user } = await DialogKeywords.getProcessInfo(pid);
|
|
GBLogEx.info(min, `Image Processing SHARPEN ${file}.`);
|
|
|
|
const gbfile = DialogKeywords.getFileByHandle(file);
|
|
|
|
// TODO: sharp.
|
|
return;
|
|
}
|
|
|
|
/**
|
|
* SET ORIENTATION VERTICAL
|
|
*
|
|
* file = MERGE file1, file2, file3
|
|
*/
|
|
public async mergeImage({ pid, files }) {
|
|
const { min, user } = await DialogKeywords.getProcessInfo(pid);
|
|
|
|
let paths = [];
|
|
await CollectionUtil.asyncForEach(files, async file => {
|
|
const gbfile = DialogKeywords.getFileByHandle(file);
|
|
paths.push(gbfile.path);
|
|
});
|
|
|
|
const botId = min.instance.botId;
|
|
const packagePath = GBUtil.getGBAIPath(min.botId);
|
|
// TODO: const img = await joinImages(paths);
|
|
const localName = path.join(
|
|
'work',
|
|
packagePath,
|
|
'cache',
|
|
`img-mrg${GBAdminService.getRndReadableIdentifier()}.png`
|
|
);
|
|
const url = urlJoin(GBServer.globals.publicAddress, min.botId, 'cache', path.basename(localName));
|
|
// img.toFile(localName);
|
|
|
|
return { localName: localName, url: url, data: null };
|
|
}
|
|
|
|
/**
|
|
* Sharpen the image.
|
|
*
|
|
* @example file = BLUR file
|
|
*/
|
|
public async blur({ pid, file: file }) {
|
|
const { min, user } = await DialogKeywords.getProcessInfo(pid);
|
|
GBLogEx.info(min, `Image Processing SHARPEN ${file}.`);
|
|
|
|
const gbfile = DialogKeywords.getFileByHandle(file);
|
|
return;
|
|
}
|
|
|
|
public async getImageFromPrompt({ pid, prompt }) {
|
|
const { min, user, params } = await DialogKeywords.getProcessInfo(pid);
|
|
|
|
const azureOpenAIKey = await min.core.getParam(min.instance, 'Azure Open AI Key', null, true);
|
|
const azureOpenAIEndpoint = await min.core.getParam(min.instance, 'Azure Open AI Endpoint', null, true);
|
|
const azureOpenAIVersion = await (min.core as any)['getParam'](min.instance, 'Azure Open AI Version', null, true);
|
|
const azureOpenAIImageModel = await (min.core as any)['getParam'](min.instance, 'Azure Open AI Image Model', null, true);
|
|
|
|
|
|
if (azureOpenAIKey) {
|
|
// Initialize the Azure OpenAI client
|
|
|
|
const client = new AzureOpenAI({
|
|
baseURL: azureOpenAIEndpoint,
|
|
apiVersion: azureOpenAIVersion,
|
|
apiKey: azureOpenAIKey
|
|
});
|
|
|
|
// Make a request to the image generation endpoint
|
|
|
|
const response = await client.images.generate({
|
|
model: azureOpenAIImageModel,
|
|
prompt: prompt,
|
|
n: 1,
|
|
size: '1024x1024'
|
|
});
|
|
|
|
const gbaiName = GBUtil.getGBAIPath(min.botId);
|
|
const localName = path.join('work', gbaiName, 'cache', `DALL-E${GBAdminService.getRndReadableIdentifier()}.png`);
|
|
|
|
const url = response.data[0].url;
|
|
const res = await fetch(url);
|
|
let buf: any = Buffer.from(await res.arrayBuffer());
|
|
await fs.writeFile(localName, buf, { encoding: null });
|
|
|
|
GBLogEx.info(min, `DALL-E: ${url} - ${response.data[0].revised_prompt}.`);
|
|
|
|
return { localName, url };
|
|
}
|
|
}
|
|
|
|
public async getCaptionForImage({ pid, imageUrl }) {
|
|
const { min, user, params } = await DialogKeywords.getProcessInfo(pid);
|
|
|
|
const azureOpenAIKey = await min.core.getParam(min.instance, 'Azure Open AI Key', null);
|
|
const azureOpenAITextModel = 'gpt-4'; // Specify GPT-4 model here
|
|
const azureOpenAIEndpoint = await min.core.getParam(min.instance, 'Azure Open AI Endpoint', null);
|
|
const azureOpenAIVersion = await (min.core as any)['getParam'](min.instance, 'Azure Open AI Version', null, true);
|
|
|
|
if (azureOpenAIKey && azureOpenAITextModel && imageUrl) {
|
|
const client = new AzureOpenAI({
|
|
apiVersion: azureOpenAIVersion,
|
|
apiKey: azureOpenAIKey,
|
|
baseURL: azureOpenAIEndpoint
|
|
});
|
|
|
|
const prompt = `Provide a descriptive caption for the image at the following URL: ${imageUrl}`;
|
|
|
|
const response = await client.completions.create({
|
|
|
|
model: azureOpenAITextModel,
|
|
prompt: prompt,
|
|
max_tokens: 50
|
|
});
|
|
|
|
const caption = response['data'].choices[0].text.trim();
|
|
GBLogEx.info(min, `Generated caption: ${caption}`);
|
|
|
|
return { caption };
|
|
}
|
|
}
|
|
}
|