botserver/packages/gpt.gblib/services/ChatServices.ts
2024-03-22 18:29:54 -03:00

492 lines
17 KiB
TypeScript

/*****************************************************************************\
| █████ █████ ██ █ █████ █████ ████ ██ ████ █████ █████ ███ ® |
| ██ █ ███ █ █ ██ ██ ██ ██ ██ ██ █ ██ ██ █ █ |
| ██ ███ ████ █ ██ █ ████ █████ ██████ ██ ████ █ █ █ ██ |
| ██ ██ █ █ ██ █ █ ██ ██ ██ ██ ██ ██ █ ██ ██ █ █ |
| █████ █████ █ ███ █████ ██ ██ ██ ██ █████ ████ █████ █ ███ |
| |
| General Bots Copyright (c) pragmatismo.com.br. All rights reserved. |
| Licensed under the AGPL-3.0. |
| |
| According to our dual licensing model, this program can be used either |
| under the terms of the GNU Affero General Public License, version 3, |
| or under a proprietary license. |
| |
| The texts of the GNU Affero General Public License with an additional |
| permission and of our proprietary license can be found at and |
| in the LICENSE file you have received along with this program. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY, without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU Affero General Public License for more details. |
| |
| "General Bots" is a registered trademark of pragmatismo.com.br. |
| The licensing of the program under the AGPLv3 does not imply a |
| trademark license. Therefore any rights, title and interest in |
| our trademarks remain entirely with us. |
| |
\*****************************************************************************/
'use strict';
import { HNSWLib } from '@langchain/community/vectorstores/hnswlib';
import { StringOutputParser } from "@langchain/core/output_parsers";
import { AIMessagePromptTemplate, ChatPromptTemplate, HumanMessagePromptTemplate, MessagesPlaceholder } from '@langchain/core/prompts';
import { RunnableSequence } from "@langchain/core/runnables";
import { convertToOpenAITool } from "@langchain/core/utils/function_calling";
import { ChatOpenAI } from "@langchain/openai";
import { GBLog, GBMinInstance } from 'botlib';
import * as Fs from 'fs';
import { jsonSchemaToZod } from "json-schema-to-zod";
import { BufferWindowMemory } from 'langchain/memory';
import Path from 'path';
import { CollectionUtil } from 'pragmatismo-io-framework';
import { DialogKeywords } from '../../basic.gblib/services/DialogKeywords.js';
import { GBVMService } from '../../basic.gblib/services/GBVMService.js';
import { GBConfigService } from '../../core.gbapp/services/GBConfigService.js';
import { GuaribasSubject } from '../../kb.gbapp/models/index.js';
import { Serialized } from "@langchain/core/load/serializable";
import { BaseCallbackHandler } from "@langchain/core/callbacks/base";
import { pdfToPng, PngPageOutput } from 'pdf-to-png-converter';
import { DynamicStructuredTool } from "@langchain/core/tools";
import { WikipediaQueryRun } from "@langchain/community/tools/wikipedia_query_run";
import {
BaseLLMOutputParser,
OutputParserException,
} from "@langchain/core/output_parsers";
import { ChatGeneration, Generation } from "@langchain/core/outputs";
import { GBAdminService } from '../../admin.gbapp/services/GBAdminService.js';
import { GBServer } from '../../../src/app.js';
import urlJoin from 'url-join';
import { getDocument } from "pdfjs-dist/legacy/build/pdf.mjs";
export interface CustomOutputParserFields { }
export type ExpectedOutput = string;
function isChatGeneration(
llmOutput: ChatGeneration | Generation
): llmOutput is ChatGeneration {
return "message" in llmOutput;
}
class CustomHandler extends BaseCallbackHandler {
name = "custom_handler";
handleLLMNewToken(token: string) {
GBLog.info(`LLM: token: ${JSON.stringify(token)}`);
}
handleLLMStart(llm: Serialized, _prompts: string[]) {
GBLog.info(`LLM: handleLLMStart ${JSON.stringify(llm)}, Prompts: ${_prompts.join('\n')}`);
}
handleChainStart(chain: Serialized) {
GBLog.info(`LLM: handleChainStart: ${JSON.stringify(chain)}`);
}
handleToolStart(tool: Serialized) {
GBLog.info(`LLM: handleToolStart: ${JSON.stringify(tool)}`);
}
}
const logHandler = new CustomHandler();
export class GBLLMOutputParser extends BaseLLMOutputParser<ExpectedOutput> {
lc_namespace = ["langchain", "output_parsers"];
private toolChain: RunnableSequence
private documentChain: RunnableSequence;
private min;
constructor(min, toolChain: RunnableSequence, documentChain: RunnableSequence) {
super();
this.min = min;
this.toolChain = toolChain;
}
async parseResult(
llmOutputs: ChatGeneration[] | Generation[]
): Promise<ExpectedOutput> {
if (!llmOutputs.length) {
throw new OutputParserException(
"Output parser did not receive any generations."
);
}
let result;
if (llmOutputs[0]['message'].lc_kwargs.additional_kwargs.tool_calls) {
return this.toolChain.invoke({ func: llmOutputs[0]['message'].lc_kwargs.additional_kwargs.tool_calls });
}
if (isChatGeneration(llmOutputs[0])) {
result = llmOutputs[0].message.content;
} else {
result = llmOutputs[0].text;
}
const naiveJSONFromText = (text) => {
const match = text.match(/\{[\s\S]*\}/);
if (!match) return null;
try {
return {metadata: JSON.parse(match[0]),
text: text.replace(match, '')};
} catch {
return null;
}
};
if (result) {
const res = naiveJSONFromText(result);
if (res) {
const {metadata, text} = res;
const {url} = await ChatServices.pdfPageAsImage(this.min, metadata.file,
metadata.page);
result = `![alt text](${url})
${result}`;
}
}
return result;
}
}
export class ChatServices {
public static async pdfPageAsImage(min, filename, pageNumber) {
const gbaiName = DialogKeywords.getGBAIPath(min.botId, 'gbkb');
const localName = Path.join('work', gbaiName, 'docs', filename);
// Converts the PDF to PNG.
const pngPages: PngPageOutput[] = await pdfToPng(localName, {
disableFontFace: true,
useSystemFonts: true,
viewportScale: 2.0,
pagesToProcess: [pageNumber],
strictPagesToProcess: false,
verbosityLevel: 0
});
// Prepare an image on cache and return the GBFILE information.
if (pngPages.length > 0) {
const buffer = pngPages[0].content;
const gbaiName = DialogKeywords.getGBAIPath(min.botId, null);
const localName = Path.join('work', gbaiName, 'cache', `img${GBAdminService.getRndReadableIdentifier()}.png`);
const url = urlJoin(GBServer.globals.publicAddress, min.botId, 'cache', Path.basename(localName));
Fs.writeFileSync(localName, buffer, { encoding: null });
return { localName: localName, url: url, data: buffer };
}
}
private static async getRelevantContext(
vectorStore: HNSWLib,
sanitizedQuestion: string,
numDocuments: number = 10
): Promise<string> {
if (sanitizedQuestion === '') {
return '';
}
const documents = await vectorStore.similaritySearch(sanitizedQuestion, numDocuments);
let output = '';
await CollectionUtil.asyncForEach(documents, async (doc) => {
const metadata = doc.metadata;
const filename = Path.basename(metadata.source);
const page = await ChatServices.findPageForText(doc.metadata.source,
doc.pageContent);
output = `${output}\n\n\n\nThe following context is coming from ${filename} at page: ${page},
memorize this block among document information and return when you are refering this part of content:\n\n\n\n ${doc.pageContent} \n\n\n\n.`;
});
return output;
}
private static async findPageForText(pdfPath, searchText) {
const data = new Uint8Array(Fs.readFileSync(pdfPath));
const pdf = await getDocument({ data }).promise;
searchText = searchText.replace(/\s/g, '')
for (let i = 1; i <= pdf.numPages; i++) {
const page = await pdf.getPage(i);
const textContent = await page.getTextContent();
const text = textContent.items.map(item => item['str']).join('').replace(/\s/g, '');
if (text.includes(searchText)) return i;
}
return -1; // Texto não encontrado
}
/**
* Generate text
*
* CONTINUE keword.
*
* result = CONTINUE text
*
*/
public static async continue(min: GBMinInstance, question: string, chatId) {
}
private static memoryMap = {};
public static userSystemPrompt = {};
public static async answerByGPT(min: GBMinInstance, user, pid,
question: string,
searchScore: number,
subjects: GuaribasSubject[]
) {
if (!process.env.OPENAI_API_KEY) {
return { answer: undefined, questionId: 0 };
}
const LLMMode = min.core.getParam(
min.instance,
'Answer Mode', 'direct'
);
const docsContext = min['vectorStore'];
if (!this.memoryMap[user.userSystemId]) {
this.memoryMap[user.userSystemId] = new BufferWindowMemory({
returnMessages: true,
memoryKey: 'chat_history',
inputKey: 'input',
k: 2,
})
}
const memory = this.memoryMap[user.userSystemId];
const systemPrompt = this.userSystemPrompt[user.userSystemId];
const model = new ChatOpenAI({
openAIApiKey: process.env.OPENAI_API_KEY,
modelName: "gpt-3.5-turbo-0125",
temperature: 0,
callbacks: [logHandler],
});
let tools = await ChatServices.getTools(min);
let toolsAsText = ChatServices.getToolsAsText(tools);
const modelWithTools = model.bind({
tools: tools.map(convertToOpenAITool)
});
const questionGeneratorTemplate = ChatPromptTemplate.fromMessages([
AIMessagePromptTemplate.fromTemplate(
`
Answer the question without calling any tool, but if there is a need to call:
You have access to the following set of tools.
Here are the names and descriptions for each tool:
${toolsAsText}
Do not use any previous tools output in the chat_history.
`
),
new MessagesPlaceholder("chat_history"),
AIMessagePromptTemplate.fromTemplate(`Follow Up Input: {question}
Standalone question:`),
]);
const toolsResultPrompt = ChatPromptTemplate.fromMessages([
AIMessagePromptTemplate.fromTemplate(
`The tool just returned value in last call. Using {chat_history}
rephrase the answer to the user using this tool output.
`
),
new MessagesPlaceholder("chat_history"),
AIMessagePromptTemplate.fromTemplate(`Tool output: {tool_output}
Standalone question:`),
]);
const combineDocumentsPrompt = ChatPromptTemplate.fromMessages([
AIMessagePromptTemplate.fromTemplate(
`
This is a segmented context.
VERY IMPORTANT: When responding, ALWAYS, I said, You must always include the following information at the end of your message as a VALID standard JSON: 'file' indicating the PDF filename and 'page' indicating the page number. Example JSON format: "file": "filename.pdf", "page": 3, return valid JSON with brackets. Avoid explaining the context directly to the user; instead, refer to the document source.
\n\n{context}\n\n
And based on \n\n{chat_history}\n\n
rephrase the response to the user using the aforementioned context. If you're unsure of the answer, utilize any relevant context provided to answer the question effectively.
`
),
new MessagesPlaceholder("chat_history"),
HumanMessagePromptTemplate.fromTemplate("Question: {question}"),
]);
const callToolChain = RunnableSequence.from([
{
tool_output: async (output: object) => {
const name = output['func'][0].function.name;
const args = JSON.parse(output['func'][0].function.arguments);
GBLog.info(`Running .gbdialog '${name}' as GPT tool...`);
const pid = GBVMService.createProcessInfo(null, min, 'gpt', null);
return await GBVMService.callVM(name, min, false, pid, false, args);
},
chat_history: async () => {
const { chat_history } = await memory.loadMemoryVariables({});
return chat_history;
},
},
toolsResultPrompt,
model,
new StringOutputParser()
]);
const combineDocumentsChain = RunnableSequence.from([
{
question: (question: string) => question,
chat_history: async () => {
const { chat_history } = await memory.loadMemoryVariables({});
return chat_history;
},
context: async (output: string) => {
const c = await ChatServices.getRelevantContext(docsContext, output);
return `${systemPrompt} \n ${c ? 'Use this context to answer:\n' + c : 'answer just with user question.'}`;
},
},
combineDocumentsPrompt,
model,
new GBLLMOutputParser(min, null, null)
]);
const conversationalQaChain = RunnableSequence.from([
{
question: (i: { question: string }) => i.question,
chat_history: async () => {
const { chat_history } = await memory.loadMemoryVariables({});
return chat_history;
},
},
questionGeneratorTemplate,
modelWithTools,
new GBLLMOutputParser(min, callToolChain, docsContext?.docstore?._docs.length > 0 ? combineDocumentsChain : null),
new StringOutputParser()
]);
const conversationalToolChain = RunnableSequence.from([
{
question: (i: { question: string }) => i.question,
chat_history: async () => {
const { chat_history } = await memory.loadMemoryVariables({});
return chat_history;
},
},
questionGeneratorTemplate,
modelWithTools,
new GBLLMOutputParser(min, callToolChain, docsContext?.docstore?._docs.length > 0 ? combineDocumentsChain : null),
new StringOutputParser()
]);
let result;
// Choose the operation mode of answer generation, based on
// .gbot switch LLMMode and choose the corresponding chain.
if (LLMMode === "direct") {
result = await (tools.length > 0 ? modelWithTools : model).invoke(`
${systemPrompt}
${question}`);
result = result.content;
}
else if (LLMMode === "document") {
result = await combineDocumentsChain.invoke(question);
} else if (LLMMode === "function") {
result = await conversationalToolChain.invoke({
question,
});
}
else if (LLMMode === "full") {
throw new Error('Not implemented.'); // TODO: #407.
}
else {
GBLog.info(`Invalid Answer Mode in Config.xlsx: ${LLMMode}.`);
}
await memory.saveContext(
{
input: question,
},
{
output: result,
}
);
GBLog.info(`GPT Result: ${result.toString()}`);
return { answer: result.toString(), questionId: 0 };
}
private static getToolsAsText(tools) {
return Object.keys(tools)
.map((toolname) => `- ${tools[toolname].name}: ${tools[toolname].description}`)
.join("\n");
}
private static async getTools(min: GBMinInstance) {
let functions = [];
// Adds .gbdialog as functions if any to GPT Functions.
await CollectionUtil.asyncForEach(Object.keys(min.scriptMap), async (script) => {
const path = DialogKeywords.getGBAIPath(min.botId, "gbdialog", null);
const jsonFile = Path.join('work', path, `${script}.json`);
if (Fs.existsSync(jsonFile) && script.toLowerCase() !== 'start.vbs') {
const funcJSON = JSON.parse(Fs.readFileSync(jsonFile, 'utf8'));
const funcObj = funcJSON?.function;
if (funcObj) {
// TODO: Use ajv.
funcObj.schema = eval(jsonSchemaToZod(funcObj.parameters));
functions.push(new DynamicStructuredTool(funcObj));
}
}
});
const tool = new WikipediaQueryRun({
topKResults: 3,
maxDocContentLength: 4000,
});
functions.push(tool);
return functions;
}
}