207 lines
7.7 KiB
TypeScript
207 lines
7.7 KiB
TypeScript
/*****************************************************************************\
|
||
| █████ █████ ██ █ █████ █████ ████ ██ ████ █████ █████ ███ ® |
|
||
| ██ █ ███ █ █ ██ ██ ██ ██ ██ ██ █ ██ ██ █ █ |
|
||
| ██ ███ ████ █ ██ █ ████ █████ ██████ ██ ████ █ █ █ ██ |
|
||
| ██ ██ █ █ ██ █ █ ██ ██ ██ ██ ██ ██ █ ██ ██ █ █ |
|
||
| █████ █████ █ ███ █████ ██ ██ ██ ██ █████ ████ █████ █ ███ |
|
||
| |
|
||
| General Bots Copyright (c) pragmatismo.com.br. All rights reserved. |
|
||
| Licensed under the AGPL-3.0. |
|
||
| |
|
||
| According to our dual licensing model, this program can be used either |
|
||
| under the terms of the GNU Affero General Public License, version 3, |
|
||
| or under a proprietary license. |
|
||
| |
|
||
| The texts of the GNU Affero General Public License with an additional |
|
||
| permission and of our proprietary license can be found at and |
|
||
| in the LICENSE file you have received along with this program. |
|
||
| |
|
||
| This program is distributed in the hope that it will be useful, |
|
||
| but WITHOUT ANY WARRANTY, without even the implied warranty of |
|
||
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
|
||
| GNU Affero General Public License for more details. |
|
||
| |
|
||
| "General Bots" is a registered trademark of pragmatismo.com.br. |
|
||
| The licensing of the program under the AGPLv3 does not imply a |
|
||
| trademark license. Therefore any rights, title and interest in |
|
||
| our trademarks remain entirely with us. |
|
||
| |
|
||
\*****************************************************************************/
|
||
|
||
'use strict';
|
||
|
||
import { GBMinInstance } from 'botlib';
|
||
import { CallbackManager } from 'langchain/callbacks';
|
||
import { ChatPromptTemplate, HumanMessagePromptTemplate, SystemMessagePromptTemplate } from 'langchain/prompts';
|
||
import { ConversationChain, LLMChain } from 'langchain/chains';
|
||
import { BufferWindowMemory } from 'langchain/memory';
|
||
import { CollectionUtil } from 'pragmatismo-io-framework';
|
||
import { DialogKeywords } from '../../basic.gblib/services/DialogKeywords.js';
|
||
import Path from 'path';
|
||
import * as Fs from 'fs';
|
||
import { HNSWLib } from 'langchain/vectorstores/hnswlib';
|
||
import { GuaribasSubject } from '../../kb.gbapp/models/index.js';
|
||
import { GBConfigService } from '../../core.gbapp/services/GBConfigService.js';
|
||
import { ChatOpenAI } from "@langchain/openai";
|
||
import { JsonOutputFunctionsParser } from 'langchain/dist/output_parsers/openai_functions.js';
|
||
import { GBVMService } from '../../basic.gblib/services/GBVMService.js';
|
||
|
||
|
||
export class ChatServices {
|
||
|
||
private static async getRelevantContext(
|
||
vectorStore: HNSWLib,
|
||
sanitizedQuestion: string,
|
||
numDocuments: number
|
||
): Promise<string> {
|
||
const documents = await vectorStore.similaritySearch(sanitizedQuestion, numDocuments);
|
||
return documents
|
||
.map((doc) => doc.pageContent)
|
||
.join(', ')
|
||
.trim()
|
||
.replaceAll('\n', ' ');
|
||
}
|
||
|
||
/**
|
||
* Generate text
|
||
*
|
||
* CONTINUE keword.
|
||
*
|
||
* result = CONTINUE text
|
||
*
|
||
*/
|
||
public static async continue(min: GBMinInstance, text: string, chatId) {
|
||
|
||
}
|
||
|
||
|
||
public static async answerByGPT(min: GBMinInstance, pid,
|
||
query: string,
|
||
searchScore: number,
|
||
subjects: GuaribasSubject[]
|
||
) {
|
||
|
||
if (!process.env.OPENAI_API_KEY) {
|
||
return { answer: undefined, questionId: 0 };
|
||
}
|
||
|
||
const systemPrompt = SystemMessagePromptTemplate.fromTemplate(
|
||
`You are $${min.botId}`);
|
||
|
||
const contentLocale = min.core.getParam(
|
||
min.instance,
|
||
'Default Content Language',
|
||
GBConfigService.get('DEFAULT_CONTENT_LANGUAGE')
|
||
);
|
||
|
||
|
||
let functions = [];
|
||
|
||
// Adds .gbdialog as functions if any to GPT Functions.
|
||
|
||
await CollectionUtil.asyncForEach(Object.keys(min.scriptMap), async script => {
|
||
const path = DialogKeywords.getGBAIPath(min.botId, "gbdialog", null);
|
||
const functionJSON = Path.join('work', path, `${script}.json`);
|
||
|
||
if (Fs.existsSync(functionJSON)) {
|
||
const func = JSON.parse(Fs.readFileSync(functionJSON, 'utf8'));
|
||
|
||
functions.push(func);
|
||
}
|
||
|
||
});
|
||
|
||
|
||
let SystemPromptTailored = ''; // TODO: Load from user context.
|
||
|
||
// Generates function definition for each function
|
||
// in plain text to be used in system prompt.
|
||
|
||
let functionDef = Object.keys(functions)
|
||
.map((toolname) => `${functions[toolname].function.name}: ${functions[toolname].function.description}`)
|
||
.join("\n");
|
||
|
||
let promptTemplate = `Answer in ${contentLocale}.
|
||
You have access to the context (RELEVANTDOCS) provided by the user.
|
||
|
||
When answering think about whether the question in RELEVANTDOCS, but never mention
|
||
to user about the source.
|
||
Don’t justify your answers. Don't refer to yourself in any of the created content.
|
||
Don´t prefix RESPONSE: when answering the user.
|
||
RELEVANTDOCS: {context}
|
||
|
||
QUESTION: """{input}"""
|
||
|
||
${SystemPromptTailored}
|
||
|
||
You have the following tools that you can invoke based on the user inquiry.
|
||
Tools:
|
||
|
||
${functionDef}
|
||
|
||
`;
|
||
|
||
const chatPrompt = ChatPromptTemplate.fromPromptMessages([
|
||
systemPrompt,
|
||
HumanMessagePromptTemplate.fromTemplate(promptTemplate),]);
|
||
|
||
const windowMemory = new BufferWindowMemory({
|
||
returnMessages: false,
|
||
memoryKey: 'immediate_history',
|
||
inputKey: 'input',
|
||
k: 2,
|
||
});
|
||
|
||
const llm = new ChatOpenAI({
|
||
openAIApiKey: process.env.OPENAI_API_KEY,
|
||
modelName: "gpt-3.5-turbo-0125",
|
||
temperature: 0,
|
||
});
|
||
|
||
const llmWithTools = llm.bind({
|
||
tools: functions
|
||
});
|
||
|
||
const chain = new LLMChain({
|
||
memory: windowMemory,
|
||
prompt: chatPrompt,
|
||
llm: llmWithTools as any,
|
||
});
|
||
|
||
const contextVectorStore = min['vectorStore'];
|
||
const question = query.trim().replaceAll('\n', ' ');
|
||
const context = await this.getRelevantContext(contextVectorStore, question, 1);
|
||
|
||
let prompt;
|
||
|
||
// allow the LLM to iterate until it finds a final answer
|
||
while (true) {
|
||
const response = await chain.call({
|
||
input: question,
|
||
context,
|
||
history: '',
|
||
immediate_history: '',
|
||
});
|
||
|
||
// add this to the prompt
|
||
prompt += response;
|
||
|
||
const action = response.match(/Action: (.*)/)?.[1];
|
||
if (action) {
|
||
// execute the action specified by the LLMs
|
||
const actionInput = response.match(/Action Input: "?(.*)"?/)?.[1];
|
||
const text = '';
|
||
|
||
const result = await GBVMService.callVM(actionInput, min, false, pid,false, [text]);
|
||
|
||
|
||
prompt += `Observation: ${result}\n`;
|
||
} else {
|
||
return response.match(/Final Answer: (.*)/)?.[1];
|
||
}
|
||
}
|
||
return { answer: undefined, questionId: 0 };
|
||
}
|
||
|
||
|
||
}
|