botserver/packages/customer-satisfaction.gbapp/dialogs/FeedbackDialog.ts
2020-11-23 08:33:48 -03:00

172 lines
7 KiB
TypeScript

/*****************************************************************************\
| ( )_ _ |
| _ _ _ __ _ _ __ ___ ___ _ _ | ,_)(_) ___ ___ _ |
| ( '_`\ ( '__)/'_` ) /'_ `\/' _ ` _ `\ /'_` )| | | |/',__)/' v `\ /'_`\ |
| | (_) )| | ( (_| |( (_) || ( ) ( ) |( (_| || |_ | |\__, \| (˅) |( (_) ) |
| | ,__/'(_) `\__,_)`\__ |(_) (_) (_)`\__,_)`\__)(_)(____/(_) (_)`\___/' |
| | | ( )_) | |
| (_) \___/' |
| |
| General Bots Copyright (c) Pragmatismo.io. All rights reserved. |
| Licensed under the AGPL-3.0. |
| |
| According to our dual licensing model, this program can be used either |
| under the terms of the GNU Affero General Public License, version 3, |
| or under a proprietary license. |
| |
| The texts of the GNU Affero General Public License with an additional |
| permission and of our proprietary license can be found at and |
| in the LICENSE file you have received along with this program. |
| |
| This program is distributed in the hope that it will be useful, |
| but WITHOUT ANY WARRANTY, without even the implied warranty of |
| MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the |
| GNU Affero General Public License for more details. |
| |
| "General Bots" is a registered trademark of Pragmatismo.io. |
| The licensing of the program under the AGPLv3 does not imply a |
| trademark license. Therefore any rights, title and interest in |
| our trademarks remain entirely with us. |
| |
\*****************************************************************************/
/**
* @fileoverview General Bots server core.
*/
'use strict';
import { BotAdapter } from 'botbuilder';
import { WaterfallDialog } from 'botbuilder-dialogs';
import { GBMinInstance, IGBDialog } from 'botlib';
import { AzureText } from 'pragmatismo-io-framework';
import { CSService } from '../services/CSService';
import { Messages } from '../strings';
import { SecService } from '../../security.gbapp/services/SecService';
import { GBServer } from '../../../src/app';
import { AnalyticsService } from '../../analytics.gblib/services/AnalyticsService';
/**
* Dialog for feedback collecting.
*/
export class FeedbackDialog extends IGBDialog {
/**
* Setup dialogs flows and define services call.
*
* @param bot The bot adapter.
* @param min The minimal bot instance data.
*/
public static setup(bot: BotAdapter, min: GBMinInstance) {
const service = new CSService();
min.dialogs.add(
new WaterfallDialog('/pleaseNoBadWords', [
async step => {
const locale = step.context.activity.locale;
await min.conversationalService.sendText(min, step, Messages[locale].please_no_bad_words);
return await step.next();
}
])
);
min.dialogs.add(
new WaterfallDialog('/t', [
async step => {
const locale = step.context.activity.locale;
let sec = new SecService();
let from = step.context.activity.from.id;
await min.conversationalService.sendText(min, step, Messages[locale].please_wait_transfering);
let agentSystemId = await sec.assignHumanAgent(from, min.instance.instanceId);
await min.whatsAppDirectLine.sendToDevice(agentSystemId,
Messages[locale].notify_agent(step.context.activity.from.name));
return await step.next();
}
])
);
min.dialogs.add(
new WaterfallDialog('/qt', [
async step => {
const locale = step.context.activity.locale;
let sec = new SecService();
let from = step.context.activity.from.id;
await sec.updateCurrentAgent(from, min.instance.instanceId, null);
await min.conversationalService.sendText(min, step, Messages[locale].notify_end_transfer(min.instance.botId));
return await step.next();
}
])
);
min.dialogs.add(
new WaterfallDialog('/feedbackNumber', [
async step => {
const locale = step.context.activity.locale;
return await step.next();
},
async step => {
const locale = step.context.activity.locale;
const rate = step.result.entity;
const user = await min.userProfile.get(step.context, {});
await service.updateConversationRate(user.conversation, rate);
await min.conversationalService.sendText(min, step, Messages[locale].thanks);
return await step.next();
}
])
);
min.dialogs.add(
new WaterfallDialog('/feedback', [
async step => {
const locale = step.context.activity.locale;
await min.conversationalService.sendText(min, step, Messages[locale].about_suggestions);
step.activeDialog.state.cbId = (step.options as any).id;
return await min.conversationalService.prompt(min, step, Messages[locale].what_about_service);
},
async step => {
const minBoot = GBServer.globals.minBoot as any;
const user = await min.userProfile.get(step.context, {});
const rate = await AzureText.getSentiment(
minBoot.instance.textAnalyticsKey ? minBoot.instance.textAnalyticsKey : minBoot.instance.textAnalyticsKey,
minBoot.instance.textAnalyticsEndpoint ? minBoot.instance.textAnalyticsEndpoint : minBoot.instance.textAnalyticsEndpoint,
user.systemUser.locale,
step.result
);
// Updates values to perform Bot Analytics.
// const analytics = new AnalyticsService();
// analytics.updateConversationRate(min.instance.instanceId, user.conversation, rate);
const fixedLocale = 'en-US';
if (rate > 0.5) {
await min.conversationalService.sendText(min, step, Messages[fixedLocale].glad_you_liked);
} else {
const message = min.core.getParam<string>(min.instance, "Feedback Improve Message",
Messages[fixedLocale].we_will_improve); // TODO: Improve to be multi-language.
await min.conversationalService.sendText(min, step, message);
}
return await step.replaceDialog('/ask', { isReturning: true });
}
])
);
}
}