gbserver/src/services/llm_local.rs

526 lines
17 KiB
Rust
Raw Normal View History

2025-08-14 09:42:05 -03:00
use actix_web::{post, web, HttpRequest, HttpResponse, Result};
use dotenv::dotenv;
use reqwest::Client;
use serde::{Deserialize, Serialize};
use std::env;
use std::sync::{Arc, Mutex};
use tokio::io::{AsyncBufReadExt, BufReader};
use tokio::time::{sleep, Duration};
// OpenAI-compatible request/response structures
#[derive(Debug, Serialize, Deserialize)]
struct ChatMessage {
role: String,
content: String,
}
#[derive(Debug, Serialize, Deserialize)]
struct ChatCompletionRequest {
model: String,
messages: Vec<ChatMessage>,
stream: Option<bool>,
}
#[derive(Debug, Serialize, Deserialize)]
struct ChatCompletionResponse {
id: String,
object: String,
created: u64,
model: String,
choices: Vec<Choice>,
}
#[derive(Debug, Serialize, Deserialize)]
struct Choice {
message: ChatMessage,
finish_reason: String,
}
// Llama.cpp server request/response structures
#[derive(Debug, Serialize, Deserialize)]
struct LlamaCppRequest {
prompt: String,
n_predict: Option<i32>,
temperature: Option<f32>,
top_k: Option<i32>,
top_p: Option<f32>,
stream: Option<bool>,
}
#[derive(Debug, Serialize, Deserialize)]
struct LlamaCppResponse {
content: String,
stop: bool,
generation_settings: Option<serde_json::Value>,
}
2025-09-08 14:58:22 -03:00
pub async fn ensure_llama_servers_running() -> Result<(), Box<dyn std::error::Error + Send + Sync>>
{
let llm_local = env::var("LLM_LOCAL").unwrap_or_else(|_| "false".to_string());
2025-08-14 09:42:05 -03:00
2025-09-08 14:58:22 -03:00
if llm_local.to_lowercase() != "true" {
println!(" LLM_LOCAL is not enabled, skipping local server startup");
return Ok(());
2025-08-14 09:42:05 -03:00
}
2025-09-08 14:58:22 -03:00
// Get configuration from environment variables
let llm_url = env::var("LLM_URL").unwrap_or_else(|_| "http://localhost:8081".to_string());
let embedding_url =
env::var("EMBEDDING_URL").unwrap_or_else(|_| "http://localhost:8082".to_string());
let llama_cpp_path = env::var("LLM_CPP_PATH").unwrap_or_else(|_| "~/llama.cpp".to_string());
let llm_model_path = env::var("LLM_MODEL_PATH").unwrap_or_else(|_| "".to_string());
let embedding_model_path = env::var("EMBEDDING_MODEL_PATH").unwrap_or_else(|_| "".to_string());
println!("🚀 Starting local llama.cpp servers...");
println!("📋 Configuration:");
println!(" LLM URL: {}", llm_url);
println!(" Embedding URL: {}", embedding_url);
println!(" LLM Model: {}", llm_model_path);
println!(" Embedding Model: {}", embedding_model_path);
// Check if servers are already running
let llm_running = is_server_running(&llm_url).await;
let embedding_running = is_server_running(&embedding_url).await;
if llm_running && embedding_running {
println!("✅ Both LLM and Embedding servers are already running");
return Ok(());
2025-08-14 09:42:05 -03:00
}
2025-09-08 14:58:22 -03:00
// Start servers that aren't running
let mut tasks = vec![];
if !llm_running && !llm_model_path.is_empty() {
println!("🔄 Starting LLM server...");
tasks.push(tokio::spawn(start_llm_server(
llama_cpp_path.clone(),
llm_model_path.clone(),
llm_url.clone(),
)));
} else if llm_model_path.is_empty() {
println!("⚠️ LLM_MODEL_PATH not set, skipping LLM server");
2025-08-14 09:42:05 -03:00
}
2025-09-08 14:58:22 -03:00
if !embedding_running && !embedding_model_path.is_empty() {
println!("🔄 Starting Embedding server...");
tasks.push(tokio::spawn(start_embedding_server(
llama_cpp_path.clone(),
embedding_model_path.clone(),
embedding_url.clone(),
)));
} else if embedding_model_path.is_empty() {
println!("⚠️ EMBEDDING_MODEL_PATH not set, skipping Embedding server");
2025-08-14 09:42:05 -03:00
}
2025-09-08 14:58:22 -03:00
// Wait for all server startup tasks
for task in tasks {
task.await??;
2025-08-14 09:42:05 -03:00
}
2025-09-08 14:58:22 -03:00
// Wait for servers to be ready with verbose logging
println!("⏳ Waiting for servers to become ready...");
let mut llm_ready = llm_running || llm_model_path.is_empty();
let mut embedding_ready = embedding_running || embedding_model_path.is_empty();
2025-08-14 09:42:05 -03:00
let mut attempts = 0;
let max_attempts = 60; // 2 minutes total
2025-09-08 14:58:22 -03:00
while attempts < max_attempts && (!llm_ready || !embedding_ready) {
2025-08-14 09:42:05 -03:00
sleep(Duration::from_secs(2)).await;
2025-09-08 14:58:22 -03:00
println!(
"🔍 Checking server health (attempt {}/{})...",
2025-08-14 09:42:05 -03:00
attempts + 1,
max_attempts
);
2025-09-08 14:58:22 -03:00
if !llm_ready && !llm_model_path.is_empty() {
if is_server_running(&llm_url).await {
println!(" ✅ LLM server ready at {}", llm_url);
llm_ready = true;
} else {
println!(" ❌ LLM server not ready yet");
}
}
if !embedding_ready && !embedding_model_path.is_empty() {
if is_server_running(&embedding_url).await {
println!(" ✅ Embedding server ready at {}", embedding_url);
embedding_ready = true;
} else {
println!(" ❌ Embedding server not ready yet");
}
2025-08-14 09:42:05 -03:00
}
attempts += 1;
2025-09-08 14:58:22 -03:00
2025-08-14 09:42:05 -03:00
if attempts % 10 == 0 {
println!(
2025-09-08 14:58:22 -03:00
"⏰ Still waiting for servers... (attempt {}/{})",
2025-08-14 09:42:05 -03:00
attempts, max_attempts
);
}
}
2025-09-08 14:58:22 -03:00
if llm_ready && embedding_ready {
println!("🎉 All llama.cpp servers are ready and responding!");
Ok(())
} else {
let mut error_msg = "❌ Servers failed to start within timeout:".to_string();
if !llm_ready && !llm_model_path.is_empty() {
error_msg.push_str(&format!("\n - LLM server at {}", llm_url));
}
if !embedding_ready && !embedding_model_path.is_empty() {
error_msg.push_str(&format!("\n - Embedding server at {}", embedding_url));
}
Err(error_msg.into())
}
}
async fn start_llm_server(
llama_cpp_path: String,
model_path: String,
url: String,
) -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
let port = url.split(':').last().unwrap_or("8081");
let mut cmd = tokio::process::Command::new("sh");
cmd.arg("-c").arg(format!(
"cd {} && ./llama-server -m {} --host 0.0.0.0 --port {} --n-gpu-layers 99 &",
llama_cpp_path, model_path, port
));
cmd.spawn()?;
Ok(())
}
async fn start_embedding_server(
llama_cpp_path: String,
model_path: String,
url: String,
) -> Result<(), Box<dyn std::error::Error + Send + Sync>> {
let port = url.split(':').last().unwrap_or("8082");
let mut cmd = tokio::process::Command::new("sh");
cmd.arg("-c").arg(format!(
"cd {} && ./llama-server -m {} --host 0.0.0.0 --port {} --embedding --n-gpu-layers 99 &",
llama_cpp_path, model_path, port
));
cmd.spawn()?;
Ok(())
}
async fn is_server_running(url: &str) -> bool {
let client = reqwest::Client::new();
match client.get(&format!("{}/health", url)).send().await {
Ok(response) => response.status().is_success(),
Err(_) => false,
}
2025-08-14 09:42:05 -03:00
}
// Convert OpenAI chat messages to a single prompt
fn messages_to_prompt(messages: &[ChatMessage]) -> String {
let mut prompt = String::new();
for message in messages {
match message.role.as_str() {
"system" => {
prompt.push_str(&format!("System: {}\n\n", message.content));
}
"user" => {
prompt.push_str(&format!("User: {}\n\n", message.content));
}
"assistant" => {
prompt.push_str(&format!("Assistant: {}\n\n", message.content));
}
_ => {
prompt.push_str(&format!("{}: {}\n\n", message.role, message.content));
}
}
}
prompt.push_str("Assistant: ");
prompt
}
// Proxy endpoint
2025-09-08 14:58:22 -03:00
#[post("/v1/chat/completions")]
2025-08-17 14:43:35 -03:00
pub async fn chat_completions_local(
2025-08-14 09:42:05 -03:00
req_body: web::Json<ChatCompletionRequest>,
_req: HttpRequest,
) -> Result<HttpResponse> {
2025-08-17 14:43:35 -03:00
dotenv().ok().unwrap();
2025-08-14 09:42:05 -03:00
// Get llama.cpp server URL
2025-09-08 14:58:22 -03:00
let llama_url = env::var("LLM_URL").unwrap_or_else(|_| "http://localhost:8081".to_string());
2025-08-14 09:42:05 -03:00
// Convert OpenAI format to llama.cpp format
let prompt = messages_to_prompt(&req_body.messages);
let llama_request = LlamaCppRequest {
prompt,
n_predict: Some(500), // Adjust as needed
temperature: Some(0.7),
top_k: Some(40),
top_p: Some(0.9),
stream: req_body.stream,
};
// Send request to llama.cpp server
let client = Client::builder()
.timeout(Duration::from_secs(120)) // 2 minute timeout
.build()
.map_err(|e| {
eprintln!("Error creating HTTP client: {}", e);
actix_web::error::ErrorInternalServerError("Failed to create HTTP client")
})?;
let response = client
.post(&format!("{}/completion", llama_url))
.header("Content-Type", "application/json")
.json(&llama_request)
.send()
.await
.map_err(|e| {
eprintln!("Error calling llama.cpp server: {}", e);
actix_web::error::ErrorInternalServerError("Failed to call llama.cpp server")
})?;
let status = response.status();
if status.is_success() {
let llama_response: LlamaCppResponse = response.json().await.map_err(|e| {
eprintln!("Error parsing llama.cpp response: {}", e);
actix_web::error::ErrorInternalServerError("Failed to parse llama.cpp response")
})?;
// Convert llama.cpp response to OpenAI format
let openai_response = ChatCompletionResponse {
id: format!("chatcmpl-{}", uuid::Uuid::new_v4()),
object: "chat.completion".to_string(),
created: std::time::SystemTime::now()
.duration_since(std::time::UNIX_EPOCH)
.unwrap()
.as_secs(),
model: req_body.model.clone(),
choices: vec![Choice {
message: ChatMessage {
role: "assistant".to_string(),
content: llama_response.content.trim().to_string(),
},
finish_reason: if llama_response.stop {
"stop".to_string()
} else {
"length".to_string()
},
}],
};
Ok(HttpResponse::Ok().json(openai_response))
} else {
let error_text = response
.text()
.await
.unwrap_or_else(|_| "Unknown error".to_string());
eprintln!("Llama.cpp server error ({}): {}", status, error_text);
let actix_status = actix_web::http::StatusCode::from_u16(status.as_u16())
.unwrap_or(actix_web::http::StatusCode::INTERNAL_SERVER_ERROR);
Ok(HttpResponse::build(actix_status).json(serde_json::json!({
"error": {
"message": error_text,
"type": "server_error"
}
})))
}
}
2025-09-08 14:58:22 -03:00
// OpenAI Embedding Request
#[derive(Debug, Deserialize)]
pub struct EmbeddingRequest {
pub input: Vec<String>,
pub model: String,
#[serde(default)]
pub encoding_format: Option<String>,
}
// OpenAI Embedding Response
#[derive(Debug, Serialize)]
pub struct EmbeddingResponse {
pub object: String,
pub data: Vec<EmbeddingData>,
pub model: String,
pub usage: Usage,
}
#[derive(Debug, Serialize)]
pub struct EmbeddingData {
pub object: String,
pub embedding: Vec<f32>,
pub index: usize,
}
#[derive(Debug, Serialize)]
pub struct Usage {
pub prompt_tokens: u32,
pub total_tokens: u32,
}
// Llama.cpp Embedding Request
#[derive(Debug, Serialize)]
struct LlamaCppEmbeddingRequest {
pub content: String,
}
2025-09-09 15:09:28 -03:00
// FIXED: Handle the stupid nested array format
2025-09-08 14:58:22 -03:00
#[derive(Debug, Deserialize)]
2025-09-09 15:09:28 -03:00
struct LlamaCppEmbeddingResponseItem {
pub index: usize,
pub embedding: Vec<Vec<f32>>, // This is the fucked up part - embedding is an array of arrays
2025-09-08 14:58:22 -03:00
}
// Proxy endpoint for embeddings
#[post("/v1/embeddings")]
pub async fn embeddings_local(
req_body: web::Json<EmbeddingRequest>,
_req: HttpRequest,
) -> Result<HttpResponse> {
dotenv().ok();
// Get llama.cpp server URL
2025-09-09 15:09:28 -03:00
let llama_url =
env::var("EMBEDDING_URL").unwrap_or_else(|_| "http://localhost:8082".to_string());
2025-09-08 14:58:22 -03:00
let client = Client::builder()
.timeout(Duration::from_secs(120))
.build()
.map_err(|e| {
eprintln!("Error creating HTTP client: {}", e);
actix_web::error::ErrorInternalServerError("Failed to create HTTP client")
})?;
// Process each input text and get embeddings
let mut embeddings_data = Vec::new();
let mut total_tokens = 0;
for (index, input_text) in req_body.input.iter().enumerate() {
let llama_request = LlamaCppEmbeddingRequest {
content: input_text.clone(),
};
let response = client
.post(&format!("{}/embedding", llama_url))
.header("Content-Type", "application/json")
.json(&llama_request)
.send()
.await
.map_err(|e| {
eprintln!("Error calling llama.cpp server for embedding: {}", e);
actix_web::error::ErrorInternalServerError(
"Failed to call llama.cpp server for embedding",
)
})?;
let status = response.status();
if status.is_success() {
2025-09-09 15:09:28 -03:00
// First, get the raw response text for debugging
let raw_response = response.text().await.map_err(|e| {
eprintln!("Error reading response text: {}", e);
actix_web::error::ErrorInternalServerError("Failed to read response")
2025-09-08 14:58:22 -03:00
})?;
2025-09-09 15:09:28 -03:00
// Parse the response as a vector of items with nested arrays
let llama_response: Vec<LlamaCppEmbeddingResponseItem> =
serde_json::from_str(&raw_response).map_err(|e| {
eprintln!("Error parsing llama.cpp embedding response: {}", e);
eprintln!("Raw response: {}", raw_response);
actix_web::error::ErrorInternalServerError(
"Failed to parse llama.cpp embedding response",
)
})?;
// Extract the embedding from the nested array bullshit
if let Some(item) = llama_response.get(0) {
// The embedding field contains Vec<Vec<f32>>, so we need to flatten it
// If it's [[0.1, 0.2, 0.3]], we want [0.1, 0.2, 0.3]
let flattened_embedding = if !item.embedding.is_empty() {
item.embedding[0].clone() // Take the first (and probably only) inner array
} else {
vec![] // Empty if no embedding data
};
// Estimate token count
let estimated_tokens = (input_text.len() as f32 / 4.0).ceil() as u32;
total_tokens += estimated_tokens;
embeddings_data.push(EmbeddingData {
object: "embedding".to_string(),
embedding: flattened_embedding,
index,
});
} else {
eprintln!("No embedding data returned for input: {}", input_text);
return Ok(HttpResponse::InternalServerError().json(serde_json::json!({
"error": {
"message": format!("No embedding data returned for input {}", index),
"type": "server_error"
}
})));
}
2025-09-08 14:58:22 -03:00
} else {
let error_text = response
.text()
.await
.unwrap_or_else(|_| "Unknown error".to_string());
eprintln!("Llama.cpp server error ({}): {}", status, error_text);
let actix_status = actix_web::http::StatusCode::from_u16(status.as_u16())
.unwrap_or(actix_web::http::StatusCode::INTERNAL_SERVER_ERROR);
return Ok(HttpResponse::build(actix_status).json(serde_json::json!({
"error": {
"message": format!("Failed to get embedding for input {}: {}", index, error_text),
"type": "server_error"
}
})));
}
}
// Build OpenAI-compatible response
let openai_response = EmbeddingResponse {
object: "list".to_string(),
data: embeddings_data,
model: req_body.model.clone(),
usage: Usage {
prompt_tokens: total_tokens,
total_tokens,
},
};
Ok(HttpResponse::Ok().json(openai_response))
}
2025-08-14 09:42:05 -03:00
// Health check endpoint
#[actix_web::get("/health")]
pub async fn health() -> Result<HttpResponse> {
2025-09-08 14:58:22 -03:00
let llama_url = env::var("LLM_URL").unwrap_or_else(|_| "http://localhost:8081".to_string());
2025-08-14 09:42:05 -03:00
if is_server_running(&llama_url).await {
Ok(HttpResponse::Ok().json(serde_json::json!({
"status": "healthy",
"llama_server": "running"
})))
} else {
Ok(HttpResponse::ServiceUnavailable().json(serde_json::json!({
"status": "unhealthy",
"llama_server": "not running"
})))
}
}