botserver/docs/src/chapter-03/README.md

34 KiB

Chapter 03: Knowledge Base System - Vector Search and Semantic Retrieval

The General Bots Knowledge Base (gbkb) system implements a state-of-the-art semantic search infrastructure that enables intelligent document retrieval through vector embeddings and neural information retrieval. This chapter provides comprehensive technical documentation on the architecture, implementation, and optimization of the knowledge base subsystem.

Executive Summary

The knowledge base system transforms unstructured documents into queryable semantic representations, enabling natural language understanding and context-aware information retrieval. Unlike traditional keyword-based search systems, the gbkb implementation leverages dense vector representations to capture semantic meaning, supporting cross-lingual retrieval, conceptual similarity matching, and intelligent context augmentation for language model responses.

System Architecture Overview

Core Components and Data Flow

The knowledge base architecture implements a multi-stage pipeline for document processing and retrieval:

┌─────────────────────────────────────────────────────────────────┐
│                     Document Ingestion Layer                     │
│          (PDF, Word, Excel, Text, HTML, Markdown)               │
├─────────────────────────────────────────────────────────────────┤
│                    Preprocessing Pipeline                        │
│     (Extraction, Cleaning, Normalization, Validation)           │
├─────────────────────────────────────────────────────────────────┤
│                      Chunking Engine                            │
│    (Semantic Segmentation, Overlap Management, Metadata)        │
├─────────────────────────────────────────────────────────────────┤
│                    Embedding Generation                          │
│      (Transformer Models, Dimensionality Reduction)             │
├─────────────────────────────────────────────────────────────────┤
│                     Vector Index Layer                          │
│         (HNSW Index, Quantization, Sharding)                   │
├─────────────────────────────────────────────────────────────────┤
│                    Retrieval Engine                             │
│     (Semantic Search, Hybrid Retrieval, Re-ranking)            │
└─────────────────────────────────────────────────────────────────┘

Technical Specifications

Component Specification Performance Characteristics
Embedding Model all-MiniLM-L6-v2 384 dimensions, 22M parameters
Vector Index HNSW (Hierarchical Navigable Small World) M=16, ef_construction=200
Chunk Size 512 tokens (configurable) Optimal for context windows
Overlap 50 tokens Preserves boundary context
Distance Metric Cosine Similarity Range: [-1, 1], normalized
Index Build Time ~1000 docs/minute Single-threaded CPU
Query Latency <50ms p99 For 1M documents
Memory Usage ~1GB per million chunks Including metadata

Document Processing Pipeline

Phase 1: Document Ingestion and Extraction

The system implements format-specific extractors for comprehensive document support:

PDF Processing

class PDFExtractor:
    """
    Advanced PDF extraction with layout preservation
    """
    def extract(self, file_path: str) -> DocumentContent:
        # Initialize PDF parser with configuration
        parser_config = {
            'preserve_layout': True,
            'extract_images': True,
            'detect_tables': True,
            'extract_metadata': True,
            'ocr_enabled': True,
            'ocr_language': 'eng+fra+deu+spa',
            'ocr_dpi': 300
        }
        
        # Multi-stage extraction process
        raw_text = self.extract_text_layer(file_path)
        
        if self.requires_ocr(raw_text):
            ocr_text = self.perform_ocr(file_path, parser_config)
            raw_text = self.merge_text_sources(raw_text, ocr_text)
        
        # Extract structural elements
        tables = self.extract_tables(file_path)
        images = self.extract_images(file_path)
        metadata = self.extract_metadata(file_path)
        
        # Preserve document structure
        sections = self.detect_sections(raw_text)
        headings = self.extract_headings(raw_text)
        
        return DocumentContent(
            text=raw_text,
            tables=tables,
            images=images,
            metadata=metadata,
            structure=DocumentStructure(sections, headings)
        )

Supported File Formats and Parsers

Format Parser Library Features Max Size Processing Time
PDF Apache PDFBox + Tesseract Text, OCR, Tables, Images 500MB ~10s/MB
DOCX Apache POI + python-docx Formatted text, Styles, Comments 100MB ~5s/MB
XLSX Apache POI + openpyxl Sheets, Formulas, Charts 100MB ~8s/MB
PPTX Apache POI + python-pptx Slides, Notes, Shapes 200MB ~7s/MB
HTML BeautifulSoup + lxml DOM parsing, CSS extraction 50MB ~3s/MB
Markdown CommonMark + mistune GFM support, Tables, Code 10MB ~1s/MB
Plain Text Native UTF-8 decoder Encoding detection 100MB <1s/MB
RTF python-rtf Formatted text, Images 50MB ~4s/MB
CSV/TSV pandas + csv module Tabular data, Headers 1GB ~2s/MB
JSON ujson + jsonschema Nested structures, Validation 100MB ~1s/MB
XML lxml + xmlschema XPath, XSLT, Validation 100MB ~3s/MB

Phase 2: Text Preprocessing and Cleaning

The preprocessing pipeline ensures consistent, high-quality text for embedding:

class TextPreprocessor:
    """
    Multi-stage text preprocessing pipeline
    """
    def preprocess(self, text: str) -> str:
        # Stage 1: Encoding normalization
        text = self.normalize_unicode(text)
        text = self.fix_encoding_errors(text)
        
        # Stage 2: Whitespace and formatting
        text = self.normalize_whitespace(text)
        text = self.remove_control_characters(text)
        text = self.fix_line_breaks(text)
        
        # Stage 3: Content cleaning
        text = self.remove_boilerplate(text)
        text = self.clean_headers_footers(text)
        text = self.remove_watermarks(text)
        
        # Stage 4: Language-specific processing
        language = self.detect_language(text)
        text = self.apply_language_rules(text, language)
        
        # Stage 5: Semantic preservation
        text = self.preserve_entities(text)
        text = self.preserve_acronyms(text)
        text = self.preserve_numbers(text)
        
        return text
    
    def normalize_unicode(self, text: str) -> str:
        """Normalize Unicode characters to canonical form"""
        import unicodedata
        
        # NFD normalization followed by recomposition
        text = unicodedata.normalize('NFD', text)
        text = ''.join(
            char for char in text 
            if unicodedata.category(char) != 'Mn'
        )
        text = unicodedata.normalize('NFC', text)
        
        # Replace common Unicode artifacts
        replacements = {
            '\u2018': "'", '\u2019': "'",  # Smart quotes
            '\u201c': '"', '\u201d': '"',
            '\u2013': '-', '\u2014': '--',  # Dashes
            '\u2026': '...',                # Ellipsis
            '\xa0': ' ',                    # Non-breaking space
        }
        for old, new in replacements.items():
            text = text.replace(old, new)
        
        return text

Phase 3: Intelligent Chunking Strategy

The chunking engine implements context-aware segmentation:

class SemanticChunker:
    """
    Advanced chunking with semantic boundary detection
    """
    def chunk_document(self, 
                      text: str, 
                      chunk_size: int = 512,
                      overlap: int = 50) -> List[Chunk]:
        
        # Detect natural boundaries
        boundaries = self.detect_boundaries(text)
        
        chunks = []
        current_pos = 0
        
        while current_pos < len(text):
            # Find optimal chunk end point
            chunk_end = self.find_optimal_split(
                text, 
                current_pos, 
                chunk_size,
                boundaries
            )
            
            # Extract chunk with context
            chunk_text = text[current_pos:chunk_end]
            
            # Add overlap from previous chunk
            if chunks and overlap > 0:
                overlap_start = max(0, chunk_end - overlap)
                chunk_text = text[overlap_start:chunk_end]
            
            # Generate chunk metadata
            chunk = Chunk(
                text=chunk_text,
                start_pos=current_pos,
                end_pos=chunk_end,
                metadata=self.generate_metadata(chunk_text),
                boundaries=self.get_chunk_boundaries(
                    current_pos, 
                    chunk_end, 
                    boundaries
                )
            )
            
            chunks.append(chunk)
            current_pos = chunk_end - overlap
        
        return chunks
    
    def detect_boundaries(self, text: str) -> List[Boundary]:
        """
        Detect semantic boundaries in text
        """
        boundaries = []
        
        # Paragraph boundaries
        for match in re.finditer(r'\n\n+', text):
            boundaries.append(
                Boundary('paragraph', match.start(), 1.0)
            )
        
        # Sentence boundaries
        sentences = self.sentence_tokenizer.tokenize(text)
        for i, sent in enumerate(sentences):
            pos = text.find(sent)
            boundaries.append(
                Boundary('sentence', pos + len(sent), 0.8)
            )
        
        # Section headers
        for match in re.finditer(
            r'^#+\s+.+$|^[A-Z][^.!?]*:$', 
            text, 
            re.MULTILINE
        ):
            boundaries.append(
                Boundary('section', match.start(), 0.9)
            )
        
        # List boundaries
        for match in re.finditer(
            r'^\s*[-*•]\s+', 
            text, 
            re.MULTILINE
        ):
            boundaries.append(
                Boundary('list_item', match.start(), 0.7)
            )
        
        return sorted(boundaries, key=lambda b: b.position)

Chunking Configuration Parameters

Parameter Default Range Description Impact
chunk_size 512 128-2048 Target tokens per chunk Affects context granularity
overlap 50 0-200 Overlapping tokens Preserves boundary context
split_strategy semantic semantic, fixed, sliding Chunking algorithm Quality vs speed tradeoff
respect_boundaries true true/false Honor semantic boundaries Improves coherence
min_chunk_size 100 50-500 Minimum viable chunk Prevents fragments
max_chunk_size 1024 512-4096 Maximum chunk size Memory constraints

Phase 4: Embedding Generation

The system generates dense vector representations using transformer models:

class EmbeddingGenerator:
    """
    High-performance embedding generation with batching
    """
    def __init__(self, model_name: str = 'all-MiniLM-L6-v2'):
        self.model = self.load_model(model_name)
        self.tokenizer = self.load_tokenizer(model_name)
        self.dimension = 384
        self.max_length = 512
        self.batch_size = 32
        
    def generate_embeddings(self, 
                          chunks: List[str]) -> np.ndarray:
        """
        Generate embeddings with optimal batching
        """
        embeddings = []
        
        # Process in batches for efficiency
        for i in range(0, len(chunks), self.batch_size):
            batch = chunks[i:i + self.batch_size]
            
            # Tokenize with padding and truncation
            encoded = self.tokenizer(
                batch,
                padding=True,
                truncation=True,
                max_length=self.max_length,
                return_tensors='pt'
            )
            
            # Generate embeddings
            with torch.no_grad():
                model_output = self.model(**encoded)
                
                # Mean pooling over token embeddings
                token_embeddings = model_output[0]
                attention_mask = encoded['attention_mask']
                
                # Compute mean pooling
                input_mask_expanded = (
                    attention_mask
                    .unsqueeze(-1)
                    .expand(token_embeddings.size())
                    .float()
                )
                
                sum_embeddings = torch.sum(
                    token_embeddings * input_mask_expanded, 
                    1
                )
                sum_mask = torch.clamp(
                    input_mask_expanded.sum(1), 
                    min=1e-9
                )
                embeddings_batch = sum_embeddings / sum_mask
                
                # Normalize embeddings
                embeddings_batch = F.normalize(
                    embeddings_batch, 
                    p=2, 
                    dim=1
                )
                
                embeddings.append(embeddings_batch.cpu().numpy())
        
        return np.vstack(embeddings)

Embedding Model Comparison

Model Dimensions Size Speed Quality Memory
all-MiniLM-L6-v2 384 80MB 14,200 sent/sec 0.631 290MB
all-mpnet-base-v2 768 420MB 2,800 sent/sec 0.634 1.2GB
multi-qa-MiniLM-L6 384 80MB 14,200 sent/sec 0.618 290MB
paraphrase-multilingual 768 1.1GB 2,300 sent/sec 0.628 2.1GB
e5-base-v2 768 440MB 2,700 sent/sec 0.642 1.3GB
bge-base-en 768 440MB 2,600 sent/sec 0.644 1.3GB

Phase 5: Vector Index Construction

The system builds high-performance vector indices for similarity search:

class VectorIndexBuilder:
    """
    HNSW index construction with optimization
    """
    def build_index(self, 
                   embeddings: np.ndarray,
                   metadata: List[Dict]) -> VectorIndex:
        
        # Configure HNSW parameters
        index_config = {
            'metric': 'cosine',
            'm': 16,  # Number of bi-directional links
            'ef_construction': 200,  # Size of dynamic candidate list
            'ef_search': 100,  # Size of search candidate list
            'num_threads': 4,  # Parallel construction
            'seed': 42  # Reproducible builds
        }
        
        # Initialize index
        index = hnswlib.Index(
            space=index_config['metric'],
            dim=embeddings.shape[1]
        )
        
        # Set construction parameters
        index.init_index(
            max_elements=len(embeddings) * 2,  # Allow growth
            M=index_config['m'],
            ef_construction=index_config['ef_construction'],
            random_seed=index_config['seed']
        )
        
        # Add vectors with IDs
        index.add_items(
            embeddings,
            ids=np.arange(len(embeddings)),
            num_threads=index_config['num_threads']
        )
        
        # Set runtime search parameters
        index.set_ef(index_config['ef_search'])
        
        # Build metadata index
        metadata_index = self.build_metadata_index(metadata)
        
        # Optional: Build secondary indices
        secondary_indices = {
            'date_index': self.build_date_index(metadata),
            'category_index': self.build_category_index(metadata),
            'author_index': self.build_author_index(metadata)
        }
        
        return VectorIndex(
            vector_index=index,
            metadata_index=metadata_index,
            secondary_indices=secondary_indices,
            config=index_config
        )

Index Performance Characteristics

Documents Build Time Memory Usage Query Time (k=10) Recall@10
1K 0.5s 12MB 0.8ms 0.99
10K 5s 95MB 1.2ms 0.98
100K 52s 890MB 3.5ms 0.97
1M 9m 8.7GB 12ms 0.95
10M 95m 86GB 45ms 0.93

Retrieval System Architecture

Semantic Search Implementation

The retrieval engine implements multi-stage retrieval with re-ranking:

class SemanticRetriever:
    """
    Advanced retrieval with hybrid search and re-ranking
    """
    def retrieve(self, 
                query: str,
                k: int = 10,
                filters: Dict = None) -> List[SearchResult]:
        
        # Stage 1: Query processing
        processed_query = self.preprocess_query(query)
        query_expansion = self.expand_query(processed_query)
        
        # Stage 2: Generate query embedding
        query_embedding = self.embedding_generator.generate(
            processed_query
        )
        
        # Stage 3: Dense retrieval (vector search)
        dense_results = self.vector_search(
            query_embedding,
            k=k * 3,  # Over-retrieve for re-ranking
            filters=filters
        )
        
        # Stage 4: Sparse retrieval (keyword search)
        sparse_results = self.keyword_search(
            query_expansion,
            k=k * 2,
            filters=filters
        )
        
        # Stage 5: Hybrid fusion
        fused_results = self.reciprocal_rank_fusion(
            dense_results,
            sparse_results,
            k=60  # Fusion parameter
        )
        
        # Stage 6: Re-ranking
        reranked_results = self.rerank(
            query=processed_query,
            candidates=fused_results[:k * 2],
            k=k
        )
        
        # Stage 7: Result enhancement
        enhanced_results = self.enhance_results(
            results=reranked_results,
            query=processed_query
        )
        
        return enhanced_results
    
    def vector_search(self, 
                     embedding: np.ndarray,
                     k: int,
                     filters: Dict = None) -> List[SearchResult]:
        """
        Perform approximate nearest neighbor search
        """
        # Apply pre-filters if specified
        if filters:
            candidate_ids = self.apply_filters(filters)
            search_params = {
                'filter': lambda idx: idx in candidate_ids
            }
        else:
            search_params = {}
        
        # Execute vector search
        distances, indices = self.index.search(
            embedding.reshape(1, -1),
            k=k,
            **search_params
        )
        
        # Convert to search results
        results = []
        for dist, idx in zip(distances[0], indices[0]):
            if idx == -1:  # Invalid result
                continue
                
            # Retrieve metadata
            metadata = self.metadata_store.get(idx)
            
            # Calculate relevance score
            score = self.distance_to_score(dist)
            
            results.append(SearchResult(
                chunk_id=idx,
                score=score,
                text=metadata['text'],
                metadata=metadata,
                distance=dist,
                retrieval_method='dense'
            ))
        
        return results

Query Processing and Expansion

Sophisticated query understanding and expansion:

class QueryProcessor:
    """
    Query understanding and expansion
    """
    def process_query(self, query: str) -> ProcessedQuery:
        # Language detection
        language = self.detect_language(query)
        
        # Spell correction
        corrected = self.spell_correct(query, language)
        
        # Entity recognition
        entities = self.extract_entities(corrected)
        
        # Intent classification
        intent = self.classify_intent(corrected)
        
        # Query expansion techniques
        expanded = self.expand_query(corrected)
        
        return ProcessedQuery(
            original=query,
            corrected=corrected,
            language=language,
            entities=entities,
            intent=intent,
            expansions=expanded
        )
    
    def expand_query(self, query: str) -> List[str]:
        """
        Multi-strategy query expansion
        """
        expansions = [query]  # Original query
        
        # Synonym expansion
        for word in query.split():
            synonyms = self.get_synonyms(word)
            for synonym in synonyms[:3]:
                expanded = query.replace(word, synonym)
                expansions.append(expanded)
        
        # Acronym expansion
        acronyms = self.detect_acronyms(query)
        for acronym, expansion in acronyms.items():
            expanded = query.replace(acronym, expansion)
            expansions.append(expanded)
        
        # Conceptual expansion (using WordNet)
        concepts = self.get_related_concepts(query)
        expansions.extend(concepts[:5])
        
        # Query reformulation
        reformulations = self.reformulate_query(query)
        expansions.extend(reformulations)
        
        return list(set(expansions))  # Remove duplicates

Hybrid Search and Fusion

Combining dense and sparse retrieval methods:

class HybridSearcher:
    """
    Hybrid search with multiple retrieval strategies
    """
    def reciprocal_rank_fusion(self,
                              dense_results: List[SearchResult],
                              sparse_results: List[SearchResult],
                              k: int = 60) -> List[SearchResult]:
        """
        Reciprocal Rank Fusion (RRF) for result merging
        """
        # Create score dictionaries
        dense_scores = {}
        for rank, result in enumerate(dense_results):
            dense_scores[result.chunk_id] = 1.0 / (k + rank + 1)
        
        sparse_scores = {}
        for rank, result in enumerate(sparse_results):
            sparse_scores[result.chunk_id] = 1.0 / (k + rank + 1)
        
        # Combine scores
        all_ids = set(dense_scores.keys()) | set(sparse_scores.keys())
        
        fused_results = []
        for chunk_id in all_ids:
            # RRF score combination
            score = (
                dense_scores.get(chunk_id, 0) * 0.7 +  # Dense weight
                sparse_scores.get(chunk_id, 0) * 0.3   # Sparse weight
            )
            
            # Find original result object
            result = None
            for r in dense_results + sparse_results:
                if r.chunk_id == chunk_id:
                    result = r
                    break
            
            if result:
                result.fusion_score = score
                fused_results.append(result)
        
        # Sort by fusion score
        fused_results.sort(key=lambda x: x.fusion_score, reverse=True)
        
        return fused_results

Re-ranking with Cross-Encoders

Advanced re-ranking for improved precision:

class CrossEncoderReranker:
    """
    Neural re-ranking with cross-encoder models
    """
    def __init__(self, model_name: str = 'cross-encoder/ms-marco-MiniLM-L-6-v2'):
        self.model = CrossEncoder(model_name)
        self.batch_size = 32
    
    def rerank(self, 
              query: str,
              candidates: List[SearchResult],
              k: int) -> List[SearchResult]:
        """
        Re-rank candidates using cross-encoder
        """
        # Prepare input pairs
        pairs = [
            (query, candidate.text) 
            for candidate in candidates
        ]
        
        # Score in batches
        scores = []
        for i in range(0, len(pairs), self.batch_size):
            batch = pairs[i:i + self.batch_size]
            batch_scores = self.model.predict(batch)
            scores.extend(batch_scores)
        
        # Update candidate scores
        for candidate, score in zip(candidates, scores):
            candidate.rerank_score = score
        
        # Sort by rerank score
        candidates.sort(key=lambda x: x.rerank_score, reverse=True)
        
        return candidates[:k]

Context Management and Compaction

Context Window Optimization

Intelligent context management for LLM consumption:

class ContextManager:
    """
    Context optimization for language models
    """
    def prepare_context(self,
                       search_results: List[SearchResult],
                       max_tokens: int = 2048) -> str:
        """
        Prepare optimized context for LLM
        """
        # Calculate token budget
        token_budget = max_tokens
        used_tokens = 0
        
        # Select and order chunks
        selected_chunks = []
        
        for result in search_results:
            # Estimate tokens
            chunk_tokens = self.estimate_tokens(result.text)
            
            if used_tokens + chunk_tokens <= token_budget:
                selected_chunks.append(result)
                used_tokens += chunk_tokens
            else:
                # Try to fit partial chunk
                remaining_budget = token_budget - used_tokens
                if remaining_budget > 100:  # Minimum useful size
                    truncated = self.truncate_to_tokens(
                        result.text,
                        remaining_budget
                    )
                    result.text = truncated
                    selected_chunks.append(result)
                break
        
        # Format context
        context = self.format_context(selected_chunks)
        
        # Apply compression if needed
        if self.compression_enabled:
            context = self.compress_context(context)
        
        return context
    
    def compress_context(self, context: str) -> str:
        """
        Compress context while preserving information
        """
        # Remove redundancy
        context = self.remove_redundant_sentences(context)
        
        # Summarize verbose sections
        context = self.summarize_verbose_sections(context)
        
        # Preserve key information
        context = self.preserve_key_facts(context)
        
        return context

Dynamic Context Strategies

Adaptive context selection based on query type:

class DynamicContextStrategy:
    """
    Query-aware context selection
    """
    def select_strategy(self, 
                       query: ProcessedQuery) -> ContextStrategy:
        """
        Choose optimal context strategy
        """
        if query.intent == 'factual':
            return FactualContextStrategy(
                max_chunks=3,
                focus='precision',
                include_metadata=True
            )
        
        elif query.intent == 'exploratory':
            return ExploratoryContextStrategy(
                max_chunks=8,
                focus='breadth',
                include_related=True
            )
        
        elif query.intent == 'comparison':
            return ComparativeContextStrategy(
                max_chunks=6,
                focus='contrast',
                group_by='topic'
            )
        
        elif query.intent == 'summarization':
            return SummarizationContextStrategy(
                max_chunks=10,
                focus='coverage',
                remove_redundancy=True
            )
        
        else:
            return DefaultContextStrategy(
                max_chunks=5,
                focus='relevance'
            )

Performance Optimization

Caching Architecture

Multi-level caching for optimal performance:

class KnowledgeCacheManager:
    """
    Hierarchical caching system
    """
    def __init__(self):
        # L1: Query result cache (in-memory)
        self.l1_cache = LRUCache(
            max_size=1000,
            ttl_seconds=300
        )
        
        # L2: Embedding cache (in-memory)
        self.l2_cache = EmbeddingCache(
            max_embeddings=10000,
            ttl_seconds=3600
        )
        
        # L3: Document cache (disk)
        self.l3_cache = DiskCache(
            cache_dir='/var/cache/kb',
            max_size_gb=10,
            ttl_seconds=86400
        )
        
        # L4: CDN cache (edge)
        self.l4_cache = CDNCache(
            provider='cloudflare',
            ttl_seconds=604800
        )
    
    def get(self, key: str, level: int = 1) -> Optional[Any]:
        """
        Hierarchical cache lookup
        """
        # Try each cache level
        if level >= 1:
            result = self.l1_cache.get(key)
            if result:
                return result
        
        if level >= 2:
            result = self.l2_cache.get(key)
            if result:
                # Promote to L1
                self.l1_cache.set(key, result)
                return result
        
        if level >= 3:
            result = self.l3_cache.get(key)
            if result:
                # Promote to L2 and L1
                self.l2_cache.set(key, result)
                self.l1_cache.set(key, result)
                return result
        
        if level >= 4:
            result = self.l4_cache.get(key)
            if result:
                # Promote through all levels
                self.l3_cache.set(key, result)
                self.l2_cache.set(key, result)
                self.l1_cache.set(key, result)
                return result
        
        return None

Index Optimization Techniques

Strategies for large-scale deployments:

optimization_strategies:
  index_sharding:
    description: "Split index across multiple shards"
    when_to_use: "> 10M documents"
    configuration:
      shard_count: 8
      shard_strategy: "hash_based"
      replication_factor: 2
  
  quantization:
    description: "Reduce vector precision"
    when_to_use: "Memory constrained"
    configuration:
      type: "product_quantization"
      subvectors: 8
      bits: 8
      training_samples: 100000
  
  hierarchical_index:
    description: "Multi-level index structure"
    when_to_use: "> 100M documents"
    configuration:
      levels: 3
      fanout: 100
      rerank_top_k: 1000
  
  gpu_acceleration:
    description: "Use GPU for search"
    when_to_use: "Low latency critical"
    configuration:
      device: "cuda:0"
      batch_size: 1000
      precision: "float16"

Integration with LLM Systems

Retrieval-Augmented Generation (RAG)

Seamless integration with language models:

class RAGPipeline:
    """
    Retrieval-Augmented Generation implementation
    """
    def generate_response(self, 
                         query: str,
                         conversation_history: List[Message] = None) -> str:
        """
        Generate LLM response with retrieved context
        """
        # Step 1: Retrieve relevant context
        search_results = self.knowledge_base.search(
            query=query,
            k=5,
            filters=self.build_filters(conversation_history)
        )
        
        # Step 2: Prepare context
        context = self.context_manager.prepare_context(
            search_results=search_results,
            max_tokens=2048
        )
        
        # Step 3: Build prompt
        prompt = self.build_prompt(
            query=query,
            context=context,
            history=conversation_history
        )
        
        # Step 4: Generate response
        response = self.llm.generate(
            prompt=prompt,
            temperature=0.7,
            max_tokens=512
        )
        
        # Step 5: Post-process response
        response = self.post_process(
            response=response,
            citations=search_results
        )
        
        # Step 6: Update conversation state
        self.update_conversation_state(
            query=query,
            response=response,
            context_used=search_results
        )
        
        return response
    
    def build_prompt(self, 
                    query: str,
                    context: str,
                    history: List[Message] = None) -> str:
        """
        Construct optimized prompt for LLM
        """
        prompt_template = """
        You are a helpful assistant with access to a knowledge base.
        Use the following context to answer the user's question.
        If the context doesn't contain relevant information, say so.
        
        Context:
        {context}
        
        Conversation History:
        {history}
        
        User Question: {query}
        
        Assistant Response:
        """
        
        history_text = self.format_history(history) if history else "None"
        
        return prompt_template.format(
            context=context,
            history=history_text,
            query=query
        )

Monitoring and Analytics

Knowledge Base Metrics

Comprehensive monitoring for system health:

{
  "timestamp": "2024-03-15T14:30:00Z",
  "metrics": {
    "collection_stats": {
      "total_documents": 15823,
      "total_chunks": 234567,
      "total_embeddings": 234567,
      "index_size_mb": 892,
      "storage_size_gb": 12.4
    },
    "performance_metrics": {
      "indexing_rate": 1247,
      "query_latency_p50": 23,
      "query_latency_p99": 87,
      "embedding_latency_p50": 12,
      "embedding_latency_p99": 45,
      "cache_hit_rate": 0.823
    },
    "quality_metrics": {
      "mean_relevance_score": 0.784,
      "recall_at_10": 0.923